top of page

                                                                    «Олимпиадная математика»

                                                                     для обучающихся 6 класса

 

      Главная цель изучения данного курса - формирование всесторонне образованной личности, умеющей ставить цели, организовывать свою деятельность, оценивать результаты своего труда, применять математические знания в жизни.

      Данная программа позволяет ознакомиться со многими интересными вопросами математики, выходящими за рамки школьной программы, расширить целостное представление о проблеме данной науки.

      Программа направлена на расширение и углубление знаний по предмету. Темы программы непосредственно примыкают к основному курсу математики 6 класса. Однако в результате занятий учащиеся должны приобрести навыки и умения решать более трудные и разнообразные задачи олимпиадного уровня.

      Занятия содействуют развитию у детей математического образа мышления: краткости речи, умелому использованию символики, правильному применению математической терминологии и т.д. Данная практика поможет ему успешно овладеть не только общеучебными умениями и навыками, но и осваивать более сложный уровень знаний по предмету, достойно выступать на олимпиадах и участвовать в различных конкурсах.

       Материал был отобран в соответствии с возрастными особенностями школьников, программой по математике для 6 класса и включил в себя темы, которые чаще всего встречаются на различных математических соревнованиях.

       Данный курс рассчитан на учащихся, которые проявляют интерес к математике, и при этом не обязательно обладают ярко выраженными математическими способностями. Для осознанного усвоения содержания, указанных тем, особое внимание уделяется практическим занятиям, групповой работе, сочетанию познавательной работы на занятиях с исследовательской домашней работой. Решение задач на смекалку, задач-ловушек, головоломок призвано помочь развитию памяти, смекалки, внимания и других качеств, позволяющих нестандартно мыслить. Такие задачи доступны для указанной возрастной группы, так как многие из них имеют игровой характер, позволяют поддерживать постоянный интерес различными историческими экскурсами, организовывать состязательные ситуации при их решении. Учащиеся получают в основном практические навыки в решении задач, курс не содержит обилия теоретических выкладок, что исключает уменьшение интереса к предмету в данной возрастной группе.

 

Основное содержание обучения в программе факультатива представлено разделами:

 

Приёмы счёта  

Приемы быстрого сложения, вычитания, умножения, деления и возведения в квадрат. Например, умножение на 4, на 10, на 11, на 25 и др. Использование сочетательного свойства сложения и распределительного свойства умножения, выбор рационального способа действий.

Арифметические задачи  

Арифметические задачи таят огромные возможности для того, чтобы научить решающих их школьников самостоятельно думать, анализируя неочевидные жизненные ситуации, приходя к пониманию первопричин разных явлений природы и жизни, а также к оценке возможных последствий принимаемых решений. Обучение арифметике включает в качестве одного из основных элементов воспитание умения ориентироваться в различных по своей природе взаимоотношениях между величинами.

 

Идеи и методы решения нестандартных задач

Решение олимпиадных задач служит хорошей подготовкой к будущей научной деятельности, заостряет интеллект. Многие рассматриваемые на факультативных занятиях задачи, интересны и сами по себе и служат материалом для описания ряда общематематических идей решения задач. На занятиях используется два способа для освоения новых методов и идей решения задач:

  1. Сначала рассмотреть описание идеи, потом разобрать примеры, потом решать задачи наэту тему;

  2. Сразу начать с задачи, чтобы учащиеся сами смогли найти идею, а уже потом рассмотреть её авторское решение и разобрать примеры.

Рассматриваемые методы:

  1. Поиск родственных задач (поиск более простой «родственной» задачи, рассмотрение частного случая, разбиение на подзадачи, обобщить задачу, свести к более простой);

  2. Доказательство от противного;

  3. Чётность: многие задачи легко решаются, если заметить, что некоторая величина имеет определённую чётность. Например чётность суммы или произведение, разбить объекты на пары, заметить чередование состояний, раскрасить объекты в два цвета. Чётность в играх – это возможность сохранить чётность некоторой величины при своём ходе;

  4. Обратный ход: если в задаче задана некоторая операция, и эта операция обратима, то можно сделать «обратный ход» от конечного результата к исходным данным;

  5. Подсчёт двумя способами: для составления уравнений некоторую величину выражают двумя способами;

  6. Индукция: рассматривается доказательство цепочки утверждений для n=1, 2, 3 и т.д. и выявленная закономерность записывается в общем виде для любого n.

 

Графы

 Во многих ситуациях удобно изображать объекты точками, а связи между ними – линиями и стрелками. Такой способ представления называется графом. «Принцип Дирихле». Если десять кроликов сидят в девяти ящиках, то в некотором ящике сидят не меньше двух кроликов

Делимость и остатки

В теме рассматривается теория остатков. Доказываются признаки делимости в общем виде.

Алгоритм Евклида

Алгоритм Евклида позволяет находить НОД чисел, решать линейные уравнения в целых числах. В теме рассматриваются арифметические задачи на нахождение НОД чисел.

Раскраски

 Рассматривается три типа задач:

  1. Раскраска уже дана, например шахматная доска;

  2. Раскраску с заданными свойствами надо придумать;

  3. Раскраска используется как идея решения.

 

Игры

Математическая игра характеризуется тем, что позиция может изменяться только в зависимости от хода игрока (шахматы, шашки, крестики-нолики, игра Баше). В математических играх существует понятие выигрышная стратегия, т.е. набор правил, следуя которым, один из игроков обязательно выиграет (независимо от того как играет соперник).

Идеи разработки стратегии игры:

  1. соответствие (основано на симметричности хода),

  2. решение с конца (попадание в выигрышную позицию),

  3. передача хода (заставить противника попасть в проигрышную позицию).

 

Логические задачи

Задачи на переливание. Задачи решаются в два способа с обязательным оформлением в таблице. Уровень сложности зависит от количества ходов-переливаний.

1) Задачи на взвешивание. Решение рассматривается в виде «дерева»ходов.

2) Логические задачи, решаемые с помощью таблиц. Решение оформляется в виде таблиц, где знаком «+» отмечается возможная, реальная ситуация, а знаком «-» - невозможная по условию задачи. Сложность варьируется от 3-х элементов сравнивания (более простые задачи) до 5-ти (более сложные).

 

«Знакомство с геометрией»

 Все занятия носят практический и игровой характер.

Простейшие геометрические фигуры (круг, треугольник, квадрат, прямоугольник, ромб, параллелограмм, трапеция), их свойства. Даются определения фигур, рассматриваются «видимые» свойства.

Записаться на курс!

bottom of page